Advanced liquid metal cooling for chip, device and system

本书特色

[

随着微纳电子技术的飞速发展,高集成度芯片、光电器件与系统等引发的热障问题,已成为制约其可持续发展的关键瓶颈。这种发展瓶颈对先进散热技术提出了前所未有的要求。在这种背景下,本书作者于2001年前后首次在芯片冷却领域引入具有通用性的液态金属散热技术,随后在国内外引发重大反响和后续大量研究,成为近年来该领域内前沿热点和极具应用前景的重大发展方向之一。影响范围甚广,正为能源、电子信息、先进制造、国防军事等领域的发展带来颠覆性变革,并将催生出一系列战略性新兴产业。 为推动这一新兴学科领域的可持续健康发展,本书作者将其十七八年的研究成果系统梳理和总结,编撰成本专著。本书系统围绕液态金属散热技术,集中阐述了其中涉及的新方法、新原理与典型应用,基本涵盖了液态金属芯片散热领域中的所有重大主题,包括:液态金属的基础热物理特性、流动特性、材料相容性、驱动方法、传热特性、微通道散热技术、相变热控技术以及一些实际器件的应用等方面,学科领域跨度大,内容崭新,系国内外该领域首部著作,是一本兼具理论学术意义和实际参考价值的学术著作。以英文版推出,是为了更好地将中国原创科研成果推向国际,因此,具有非常及时和重要的出版价值。

]

内容简介

[

随着微纳电子技术的飞速发展,高集成度芯片、光电器件与系统等引发的热障问题,已成为制约其可持续发展的关键瓶颈。这种发展瓶颈对先进散热技术提出了前所未有的要求。在这种背景下,本书作者于2001年前后首次在芯片冷却领域引入具有通用性的液态金属散热技术,随后在国内外引发重大反响和后续大量研究,成为近年来该领域内前沿热点和极具应用前景的重大发展方向之一。影响范围甚广,正为能源、电子信息、先进制造、国防军事等领域的发展带来颠覆性变革,并将催生出一系列战略性新兴产业。 为推动这一新兴学科领域的可持续健康发展,本书作者将其十七八年的研究成果系统梳理和总结,编撰成本专著。本书系统围绕液态金属散热技术,集中阐述了其中涉及的新方法、新原理与典型应用,基本涵盖了液态金属芯片散热领域中的所有重大主题,包括:液态金属的基础热物理特性、流动特性、材料相容性、驱动方法、传热特性、微通道散热技术、相变热控技术以及一些实际器件的应用等方面,学科领域跨度大,内容崭新,系国内外该领域首部著作,是一本兼具理论学术意义和实际参考价值的学术著作。以英文版推出,是为了更好地将中国原创科研成果推向国际,因此,具有非常及时和重要的出版价值。

]

作者简介

[

清华大学医学院生物医学工程系教授,中国科学院理化技术研究所研究员。先后入选中国科学院及清华大学百人计划,国家杰出青年科学基金获得者。长期从事液态金属、生物医学工程与工程热物理等领域交叉科学问题研究并作出系列开创性贡献。发现液态金属诸多全新科学现象、基础效应和变革性应用途径,开辟了液态金属在生物医疗、柔性机器人、印刷电子、3D打印、先进能源以及芯片冷却等领域突破性应用,成果在世界范围产生广泛影响出版14部跨学科前沿著作及20篇应邀著作章节;发表期刊论文480余篇(20余篇英文封面或封底故事);申报发明专利200余项,已获授权130余项。曾获国际传热界最高奖之一“The William Begell Medal”、全国首届创新争先奖、中国制冷学会技术发明一等奖、ASME会刊Journal of Electronic Packaging年度唯一最佳论文奖、入围及入选“两院院士评选中国十大科技进展新闻”各1次,入选CCTV 2015年度十大科技创新人物等。

]

目录

Chapter 1Introduction1
1.1Increasing Challenges in Advanced Cooling21.2Water Cooling and New Alternatives41.3Basic Features of Conventional Heat Exchangers61.3.1Heat Exchanger Classification by Geometry and Structure71.3.2Heat Exchange Enhancement Techniques121.4Limitations of Water�瞓ased Heat Exchanger131.4.1Overall Properties of Water131.4.2Adhesion and Cohesion141.4.3Surface Tension141.4.4Specific Heat141.4.5Conductivity151.5Liquid Metal Coolant for Chip Cooling151.6Some Facts about Liquid Metal171.7Revisit of Traditional Liquid Metal Cooling191.8Liquid Metal Enabled Innovation on Conventional Heat Exchanger221.9Potential Application Areas of Liquid Metal Thermal Management 231.9.1Chip Cooling231.9.2Heat Recovery251.9.3Energy System271.9.4Heat Transfer Process Engineering281.9.5Aerospace Exploration281.9.6Appliances in Large Power Systems291.9.7Thermal Interface Material291.9.8More New Conceptual Applications311.10Technical and Scientific Challenges in Liquid Metal Heat Transfer 321.11Conclusion35References36Chapter 2Typical Liquid Metal Medium and Properties for Advanced Cooling44
2.1Typical Properties of Liquid Metals452.1.1Low Melting Point452.1.2Thermal Conductivity452.1.3Surface Tension482.1.4Heat Capacity492.1.5Boiling Temperature502.1.6Sub�瞔ooling Point502.1.7Viscosity512.1.8Electrical Properties522.1.9Magnetic Properties522.1.10Chemical Properties522.2Alloy Candidates with Low Melting Point532.2.1Overview532.2.2GaIn Alloy532.2.3NaK Alloy552.2.4Wood�餾 Metal552.3Nano Liquid Metal as More Conductive Coolant or Grease552.3.1Technical Concept of Nano Liquid Metal552.3.2Performance of Typical Nano Liquid Metals562.4Liquid Metal Genome towards New Material Discovery612.4.1About Liquid Metal Material Genome612.4.2Urgent Needs on New Liquid Metals622.4.3Category of Room Temperature Liquid Metal Genome622.5Fundamental Routes toward Finding New Liquid Metal Materials642.5.1Alloying Strategy from Single Metal Element642.5.2Making Composite from Binary Liquid Alloys652.5.3Realizing Composite from Multicomponent Liquid Alloys662.5.4Nano Technological Strategies662.5.5Additional Physical Approaches662.5.6Chemical Strategies672.6Fundamental Theories for Material Discovery682.6.1Calculation of Phase Diagram (CALPHAD)682.6.2First Principle Prediction692.6.3Molecular Dynamics Simulation692.6.4Other Theoretical Methods702.7Experimental Ways for Material Discovery702.8Theoretical and Technical Challenges712.9Conclusion73References73Chapter 3Fabrications and Characterizations of Liquid Metal Cooling Materials803.1Preparation Methods813.1.1Alloying813.1.2Oxidizing813.1.3Fabrication of Liquid Metal Droplets823.1.4Preparation of Liquid Metal Nano Particles833.1.5Coating of Liquid Metal Surface843.1.6Loading with Nano Materials863.1.7Compositing with Other Materials873.2Characterizations of Functional Liquid Metal Materials873.2.1Regulation of Thermal Properties883.2.2Regulation of Electrical Properties883.2.3Regulation of Magnetic Properties893.2.4Regulation of Fluidic Properties893.2.5Regulation of Chemical Properties893.3Liquid Metal as Energy Harvesting or Conversion Medium903.4Low Temperature Liquid Metal Used in Harsh Environment913.4.1Working of Liquid Metal under Cryogenic Situation913.4.2Basics about Cryogenic Cooling923.5Potential Metal Candidates with Melting Point below Zero Centigrade 943.5.1Mercury953.5.2Particularities of Gallium or Its alloys963.5.3Alkali Metal and Its Alloys973.6Ways to Make Low Temperature Liquid Metal1003.6.1Phase Diagram Calculation1013.6.2Sub�瞔ooling of Metal Melt1023.6.3Experimental Approaches1043.7Potential Roles for Future Low Temperature Liquid Metal1053.8Conclusion107References107Chapter 4Corrosion Issues in Liquid Metal�瞓ased Thermal Management1144.1Corrosions Caused by Liquid Metal on Specific Substrates1154.2Characterization of Liquid Metal Corrosion1164.3Corrosion Trends of Typical Substrates with Liquid Gallium1174.4Microscopic SEM/EDS Observation and Analysis1194.4.1SEM Quantification of Corroded Surface1194.4.2EDS Quantification of Corroded Surface1204.4.3EDS Quantification of Corroded Cross�瞫ection1234.5Factors Affecting the Liquid Metal Corrosion1244.6Anti�瞔orrosion of Liquid Metal on Substrate1264.7Quantification of Gallium Alloy on AOA1284.7.1Thermal Transfer Simulation and Setting of Anodized Aluminum Alloy1284.7.2Thermal Transfer Performance1304.7.3Corrosion Resistance of Anodized Aluminum Alloy1314.8Conclusion132References133Chapter 5Nano Liquid Metal towards Making Enhanced Materials1355.1Typical Features of Nano Liquid Metals1365.2Application Issues of Nano Liquid Metals1375.2.1Energy Management1375.2.2Energy Conversion1385.2.3Energy Storage1395.2.4Interactions between Liquid Metal and Micro/nano Particles1405.2.5Fabrication of Micro/nano Liquid Metal Droplets1405.2.6Fabrication of Micro/nano Liquid Metal Motors1405.3Scientific and Technical Challenges1415.4Fabrication of Magnetic Nano Liquid Metal1425.5Nano Particles Enabled Magnetic Liquid Metal Materials1425.6Liquid Metal Phagocytosis Effect to Make Functional Materials1495.7Conclusion159References160Chapter 6Liquid Metal�瞓ased Thermal Interface Material1656.1About Thermal Interface Materials1666.2Gallium�瞓ased Thermal Interface Materials1676.2.1Preparation of GBTIM1676.2.2Characterization of GBTIM1676.3Practical Working of Gallium�瞓ased Thermal Interface Materials 1696.4Liquid Metal Amalgams with Enhanced and Tunable Thermal Properties1756.5Performance Evaluation of Liquid Metal Amalgams1776.5.1Material Preparation and Characterization1776.5.2Chemical Composition Characterization1806.5.3Characterization of Electrical and Thermal Conductivities1836.5.4DSC Characterization1856.5.5Mechanical Property Characterization1866.5.6Adhesion�瞘uaranteed Direct Painting1896.5.7Formability�瞘uaranteed Moulding1906.6Thermally Conductive and Electrically Resistive TIM1916.7Fabrication of Thermally Conductive and Electrically Resistive TIM1936.7.1Fabrication Principle1936.7.2Characterization of LMP Grease1946.7.3Performance of LMP Grease1956.8Metallic Bond Enabled Wetting between Liquid Metal and Metal Substrate2036.8.1Metallic Bond Enabled Wetting Behavior at Liquid Ga/CuGa2 Interfaces2036.8.2Quantification2056.8.3Theoretical Simulation2066.9Bulk Expansion Effect of Gallium�瞓ased Thermal Interface Material 2156.9.1Experimental Phenomena2156.9.2Influencing Factors2166.9.3Material Characterization2186.10Conclusion221References222Chapter 7Low Melting Point Metal Enabled Phase Change Cooling2277.1About Phase Change Materials2287.2Classification of PCMs2297.3Typical Features of Low Melting Point Metals as PCMs2327.3.1Selection Criterion of PCMs2327.3.2Properties of Low Melting Point Metal PCMs2337.4Case of Using Low Melting Point Metal PCM for Smart Cooling of USB Disk2347.5Case of Using Low Melting Point Metal PCM for Smart Cooling of Mobile Phone2377.6Potential Application Areas of Low Melting Point Metal PCM2467.6.1PCM Used in Solar Energy2467.6.2PCM Used in Thermal Comfort Maintenance2497.6.3PCM Used in Building Heat Storage2527.6.4PCM Used in Thermal Management on Various Electronic Devices 2577.6.5PCM Used in Anti�瞝aser Heating2627.7Theory to Quantify Phase Change Process of Low Melting Point Metal 2627.7.1Enthalpy�瞤orosity Method2627.7.2Validation of Numerical Method2647.7.3Comparison with Conventional PCM Paraffin2657.7.4Dimensionless Correlations: Constant Wall Temperature2697.7.5Dimensionless Correlations: Constant Heat Flux2707.7.6Discussion on High Ra Number Condition2717.8Phase Change of Low Melting Point Metal around Horizontal Cylinder 2727.8.1Theoretical Model2737.8.2Comparison with Conventional PCM Paraffin2767.8.3Constant Wall Temperature Case2787.8.4Constant Wall Heat Flux Case2817.9Low Melting Point Metal PCM Heat Sink with Internal Fins2827.9.1Performance Enhancement of Low Melting Point Metal PCM2827.9.2PCM Preparation and Characterization2827.9.3Experimental Setup2847.9.4Transient Thermal Performance2857.9.5Cyclic Performance2877.9.6Numerical Modeling2887.10Optimization of Low Melting Point Metal PCM Heat Sink2907.10.1Optimization of PCM2907.10.2Theoretical Evaluation2917.10.3Problem Description2937.10.4Numerical Method2947.10.5Effect of Fin Number2957.10.6Effect of Fin Width Fraction2977.10.7Base Thickness and Structural Material2987.10.8Heating Condition2997.11Lattice Boltzmann Modeling of Phase Change of Low Melting Point Metal 3007.12Emerging Scientific Issues and Technical Challenges3037.13Conclusion304References305Chapter 8Fluidic Properties of Liquid Metal3138.1Splashing Phenomena of Liquid Metal Droplet3138.1.1About Impact of Liquid Metal Droplets3148.1.2Experiments on Impact of Liquid Metal Droplets3148.1.3Droplet Shapes during the Impact Dynamics3168.1.4Quantification of the Impact Process3198.1.5Splashing Shapes3238.2Impact Dynamics of Water Film Coated Liquid Metal Droplet3268.2.1Water Film Coated Liquid Metal Droplet3268.2.2Impact Dynamics of Water Film Coated Liquid Metal Droplet3278.3Hybrid Fluids Made of Liquid Metal and Allied Solution3348.4Fluidic Behaviors of Hybrid Liquid Metal and Solution3358.4.1Electric Field Actuated Liquid Metal Flow3358.4.2Self�瞕riven Motion of Liquid Metal3378.4.3Coupled Fields on Liquid Metal Machine3408.5Theoretical Foundation of Liquid Metal Flow3418.5.1Physical and Chemical Properties of Gallium3418.5.2Movement Theory3428.5.3Deformation Theory3458.6Theoretical Simulation Method3468.6.1Volume�瞣f�瞗luid Method3478.6.2Lattice Boltzmann Method3488.6.3Boundary Integral Method3498.6.4Finite�瞖lement Method3508.6.5Front�瞭racking Method3508.7Challenges and Prospects3518.8Conclusion352References352Chapter 9Liquid Metal Flow Cooling and Its Applications in Diverse Areas3579.1Comparison between Liquid Metal Cooling and Water Cooling3589.2Electromagnetic Pump Driven Liquid Metal Cooling3639.3Design of Practical Liquid Metal Cooling Device3779.3.1Thermal Resistance Evaluation Theory3789.3.2Electromagnetic Pump Design Principles3809.3.3Radiator Design Principles3819.3.4System Fabrication and Characterization3829.3.5System Cooling Capability Evaluation3849.3.6Economic Analysis and Other Practical Issues3859.4Rotational Magnetic Field Induced Flow Cooling of Liquid Metal3889.5Liquid Metal Cooling for Thermal Management of High Power LEDs3909.5.1Liquid Metal Cooling of LED3909.5.2Experimental Setup3919.5.3Heat Dissipation Performance Evaluation3929.5.4Liquid Metal Cooling of Large Power Street LED Lamp3979.6Optimization of High Performance Liquid Metal CPU Cooling3999.6.1Optimization Criterions3999.6.2Schematic Thermal Resistance Model4009.6.3Parameter Optimization of Electromagnetic Pump4019.6.4Parameter Optimization of Fin Radiator4049.6.5Product Design and Evaluation4049.7Liquid Metal Cooling System for More Practical Systems4089.7.1Liquid Metal Cooling for Desktop and Notebook Computer4089.7.2Cooling Transformer in Electricity Delivery via Liquid Metal4099.8Thermal Management of Li�瞚on Battery with Liquid Metal4119.8.1About Cooling of Electric Vehicle4119.8.2Theoretical Analysis4129.8.3Cooling Capability Evaluation4149.8.4Pump Power Consumption4169.8.5Temperature Uniformity4179.8.6Numerical Simulation Model4189.8.7Computational Results4209.9Thawing Issue of Frozen Liquid Metal Coolant4249.10Conclusion427References428Chapter 10Self�瞐daptable Liquid Metal Cooling43210.1Electromagnetic Driving of Liquid Metal Coolant43210.2Heat Driven Thermoelectric�瞖lectromagnetic Generator43310.3Self�瞐daptive Waste Heat Driven Liquid Metal Cooling43510.4Thermal Resistance Analysis on Heat Driven Liquid Metal Cooling System44010.5Thermosyphon Effect Driven Liquid Metal Cooling44310.6Thermal Resistance Analysis on Thermosyphon Effect Driven Liquid Metal Cooling 44810.7Design of a Practical Self�瞕riven Liquid Metal Cooling Device in a Closed Cabinet45210.7.1Practical Application of Self�瞕riven Liquid Metal Cooling45210.7.2Cooling Capability Evaluation45310.7.3Convective Heat Transfer Thermal Resistance of Liquid Metal45510.7.4System Fabrication and Test45810.8Working of a Practical Self�瞕riven Liquid Metal Cooling Device in a Closed Cabinet46010.9Conclusion464References465Chapter 11Liquid Metal Cooling in Small Space46811.1Liquid Metal�瞓ased Miniaturized or Micro Chip Cooling Device46911.1.1Miniaturized Chip Cooling Device46911.1.2MEMS�瞓ased Chip Cooling Device47011.1.3MEMS�瞓ased Liquid Metal Cooling Device in Harsh Environment 47211.2Heat Spreader Based on Room Temperature Liquid Metal47211.2.1About Heat Spreader47211.2.2Fundamental Equations47311.2.3Performance Evaluation47411.3Liquid Metal Blade Heat Dissipator47811.4Liquid Metal�瞓ased Mini/micro Channel Cooling Device48511.4.1About Mini/micro Channel Cooling Device48511.4.2Pressure Difference under Different Coolant Volume Flow48711.4.3Convection Coefficient under Different Coolant Volume Flow48811.4.4Thermal Resistance under Different Pump Power48911.4.5Flow Pattern Discrimination49011.4.6Flow Resistance Comparison49111.4.7Convective Heat Transfer Coefficient Comparison49211.4.8Other Flowing Issues49311.4.9Liquid Metal Alloy�瞓ased Mini Channel Heat Exchanger49411.5Hybrid Mini/micro Channel Heat Sink Based on Liquid Metal and Water49411.5.1Hybrid Mini/micro Channel Heat Sink49511.5.2Materials49611.5.3Test Platform49711.5.4Cooling Capability Comparison with Pure Water Cooling System 49811.6Flow and Thermal Modeling and Optimization of Micro/mini Channel Heat Sink50211.6.1About Micro/mini Channel Heat Sink50211.6.2Flow and Thermal Model50311.6.3Optimization of Micro/mini Channel Heat Sink50511.6.4Micro Channel Water Cooling50511.6.5Channel Aspect Ratio50611.6.6Channel Number and Width Ratio50711.6.7Velocity50811.6.8Base Thickness50911.6.9Structural Material51011.6.10Mini Channel Liquid Metal Cooling51011.6.11Mini Channel Water Cooling51311.7Conclusion514References515Chapter 12Hybrid Cooling via Liquid Metal and Aqueous Solution51712.1Electrically Driven Hybrid Cooling via Liquid Metal and Aqueous Solution51812.1.1Coolants and Driving Strategy51812.1.2System Designing51912.1.3Continuous Actuation of Liquid Metal Sphere�餾 Circular Motion 51912.1.4Heat Transfer Performance52012.1.5Thermal Resistance Components52112.1.6Heat Transfer Capacity under Different Driving Voltages52212.1.7Electrical Driving of Liquid Metal Droplet52312.1.8Liquid Metal Droplet�餾 Periodic Circular Motion in Different Conditions 52412.1.9More Potential Coolants with Improved Performances52512.2Alternating Electric Field Actuated Liquid Metal Cooling52612.2.1Liquid Metal as Water Driving Pump52612.2.2Performance of the Liquid Metal Droplet Driven Flow52712.3Self�瞕riving Thermo�瞤neumatic Liquid Metal Cooling or Energy Harvesting53512.3.1Hybrid Coolants towards Automatic Heating Driving53512.3.2Running of Thermo�瞤neumatic Liquid Metal Energy Harvester53612.4Hybrid Liquid Metal�瞱ater Cooling System for Heat Dissipation54112.4.1Combined Liquid Metal Heat Transport and Water Cooling54112.4.2Working Performances of Combined Liquid Metal and Water Cooling54212.4.3Theoretical Analysis on Combined Liquid Metal and Water Cooling54712.5Electromagnetic Driving Rotation of Hybrid Liquid Metal and Solution Pool55112.5.1Electromagnetic Driving Rotation of Hybrid Fluids55112.5.2Rotational Motion of Liquid Metal in Electromagnetic Field55212.5.3Controlling the Rotating Motion of Liquid Metal Pool55512.5.4Liquid Metal Patterns Induced by Electric Capillary Force55912.6Dynamic Interactions of Leidenfrost Droplets on Liquid Metal Surface56612.7Conclusion574References575Chapter 13Liquid Metal for the Harvesting of Heat and Energy57713.1Direct Harvesting of Solar Thermal Power or Low�瞘rade Heat58013.2Liquid Metal�瞓ased Thermoelectric Generation58113.3Thermionic Technology58713.4Liquid Metal�瞓ased MHD Power Generation58913.5Alkali Metal�瞓ased Thermoelectric Conversion Technology59013.6Direct Solar Thermoelectric Power Generation59113.7Liquid Metal Cooled Photovoltaic Cell59613.7.1Thermal Management for Optical Concentration Solar Cells59613.7.2Experimental System59713.7.3Performance Evaluation59813.7.4Theoretical Evaluation on Thermal Resistance60113.8Solar Thermionic Power Generation60513.9MHD and AMTEC Technology60913.10Cascade System61213.11Remarks and Future Developments61413.12Harvesting Heat to Generate Electricity via Liquid Metal Thermosyphon Effect61613.13Liquid Metal Thermal Joint61913.14Conclusion626References626Chapter 14Combinatorial Liquid Metal Heat Transfer towards Extreme Cooling63014.1Proposition of Combinatorial Liquid Metal Heat Transfer63014.2Basic Cooling System63314.2.1Abstract Division of A Cooling System63314.2.2Heat Acquisition Segment63514.2.3Heat Rejection Segment63714.2.4Heat Transport Segment63714.3LMPM PCM Combined Cooling System63914.3.1LMPM PCM Cooling63914.3.2LMPM PCM Against Thermal Shock64214.4Liquid Metal Convection�瞓ased Cooling Systems64214.5All Liquid Metal Combined Cooling System64514.6Other Alternative Combinations64514.7Conclusion646References647Appendix653
Index656

封面

Advanced liquid metal cooling for chip, device and system

书名:Advanced liquid metal cooling for chip, device and system

作者:Liu jing[著]

页数:12,660页

定价:¥598.0

出版社:上海科学技术出版社

出版日期:2020-01-01

ISBN:9787547845325

PDF电子书大小:125MB 高清扫描完整版

百度云下载:http://www.chendianrong.com/pdf

发表评论

邮箱地址不会被公开。 必填项已用*标注