风险模型:基于R的保险损失预测
本书特色
[
保险是经营风险的行业,风险的评估和定价是保险公司*为核心的竞争力。本书以保险业为研究对象,讨论了相应的风险模型及其应用,主要包括损失概率、损失次数、损失金额和累积损失的分布模型以及它们的预测模型,同时还探讨了巨灾损失和相依风险的建模问题。在实证研究中,以R语言为计算工具,提供了详细的程序代码,方便读者再现完整的计算过程。
本书适合风险管理、保险与精算等相关专业的高年级学生、研究人员或从业人员参考。
]
内容简介
[
本书为中国人民大学统计学院组织编撰的“应用统计工程前沿丛书”(“十二五”国家重点图书出版规划项目)中的一本,以R语言为工具讨论了保险中的风险预测方法。风险预测是保险公司进行风险评估和合理定价的依据,是其提高核心竞争力的有力手段。
]
目录
目录
第1章风险度量
1.1描述随机变量的函数
1.1.1分布函数
1.1.2概率密度函数
1.1.3生存函数
1.1.4概率母函数
1.1.5矩母函数
1.1.6危险率函数
1.2常用的风险度量方法
1.2.1VaR
1.2.2TVaR
1.2.3基于扭曲变换的风险度量
第2章损失金额分布模型
2.1常用的损失金额分布
2.1.1正态分布
2.1.2指数分布
2.1.3伽马分布
2.1.4逆高斯分布
2.1.5对数正态分布
2.1.6帕累托分布
2.1.7韦布尔分布
2.2新分布的生成
2.2.1函数变换
2.2.2混合分布
2.3免赔额的影响
2.4赔偿限额的影响
2.5通货膨胀的影响
第3章损失次数分布模型
3.1(a, b, 0)分布类
3.1.1泊松分布
3.1.2二项分布
3.1.3负二项分布
3.1.4几何分布
3.2(a, b, 1)分布类
3.2.1零截断分布
3.2.2零调整分布
3.3零膨胀分布
3.4复合分布
3.4.1复合分布的概率计算
3.4.2复合分布的比较
3.5混合分布
3.6免赔额对损失次数模型的影响
3.6.1免赔额对(a, b, 0)分布类的影响
3.6.2免赔额对(a, b, 1)分布类的影响
3.6.3免赔额对复合分布的影响
第4章累积损失分布模型
4.1集体风险模型
4.1.1精确计算
4.1.2参数近似
4.1.3Panjer递推法
4.1.4傅里叶近似
4.1.5随机模拟
4.2个体风险模型
4.2.1卷积法
4.2.2参数近似法
4.2.3复合泊松近似法
第5章损失分布模型的参数估计
5.1参数估计
5.1.1极大似然法
5.1.2矩估计法
5.1.3分位数配比法
5.1.4*小距离法
5.2模型的评价和比较
第6章巨灾损失模型
6.1广义极值分布
6.1.1极值分布函数
6.1.2极大吸引域
6.1.3区块*大化方法
6.2广义帕累托分布
6.2.1分布函数
6.2.2超额损失的分布
6.2.3更大阈值下超额损失的分布
6.2.4尾部生存函数
6.2.5风险度量
6.2.6参数的极大似然估计
6.2.7尾部指数的Hill估计
6.2.8尾部生存函数的Hill估计
6.3偏正态分布和偏t分布
第7章损失预测的广义线性模型
7.1广义线性模型的结构
7.1.1指数分布族
7.1.2连接函数
7.2模型的参数估计方法
7.2.1极大似然估计
7.2.2牛顿迭代法
7.2.3迭代加权*小二乘法
7.2.4牛顿迭代法与迭代加权*小二乘法的比较
7.2.5离散参数的估计
7.2.6参数估计值的标准误
7.3模型的比较与诊断
7.3.1偏差
7.3.2模型比较
7.3.3伪判定系数
7.3.4残差
7.3.5Cook距离
7.3.6连接函数的诊断
第8章损失金额预测模型
8.1线性回归模型
8.1.1模型设定
8.1.2参数估计
8.1.3连接函数
8.1.4模拟数据分析
8.2损失金额预测的伽马回归
8.2.1模型设定
8.2.2迭代加权*小二乘估计
8.2.3模拟数据分析
8.3损失金额预测的逆高斯回归
8.3.1模型设定
8.3.2迭代加权*小二乘估计
8.3.3模拟数据分析
8.3.4GAMLSS的应用
8.4有限赔款预测模型
8.5混合损失金额预测模型
8.6应用案例
8.6.1数据介绍
8.6.2描述性分析
8.6.3案均赔款的预测模型
8.6.4案均赔款对数的预测模型
第9章损失概率预测模型
9.1基于个体观察数据的损失概率预测
9.1.1伯努利分布
9.1.2伯努利分布假设下的逻辑斯谛回归
9.1.3迭代加权*小二乘估计
9.1.4模拟数据分析
9.1.5不同风险暴露时期的处理
9.2基于汇总数据的损失概率预测
9.2.1二项分布
9.2.2二项分布假设下的逻辑斯谛回归
9.2.3迭代加权*小二乘估计
9.2.4模拟数据分析
9.3损失概率预测模型的解释
9.4损失概率预测模型的评价
9.4.1偏差
9.4.2分类表
9.4.3Hosmer�睱emeshow统计量
9.5其他连接函数
9.6过离散问题
9.7应用案例
第10章损失次数预测模型
10.1泊松回归模型
10.1.1泊松分布
10.1.2模型设定
10.1.3迭代加权*小二乘估计
10.1.4抵消项
10.1.5模型参数的解释
10.1.6模拟分析
10.2过离散损失次数预测模型
10.2.1负二项Ⅰ型分布
10.2.2负二项Ⅱ型分布
10.2.3迭代加权*小二乘估计
10.2.4模型参数的解释
10.2.5模拟分析
10.3零截断与零膨胀损失次数预测模型
10.3.1零截断回归模型
10.3.2零膨胀回归模型
10.3.3零调整回归模型
10.4混合损失次数预测模型
10.5应用案例
10.5.1描述性分析
10.5.2索赔频率预测模型
第11章累积损失的预测模型
11.1Tweedie回归
11.2零调整逆高斯回归
11.3应用案例
11.3.1描述性分析
11.3.2纯保费的预测模型
第12章相依风险模型
12.1Copula
12.2生存Copula
12.3相依性的度量
12.3.1线性相关系数
12.3.2秩相关系数
12.3.3尾部相依指数
12.4常见的Copula函数
12.4.1正态Copula
12.4.2t�睠opula
12.4.3Clayton Copula
12.4.4Frank Copula
12.4.5Gumbel Copula
12.4.6FGM Copula
12.4.7厚尾Copula
12.5阿基米德Copula
12.6Copula的随机模拟
12.7Copula的参数估计
12.8Copula的应用
第13章贝叶斯风险模型
13.1先验分布的选择
13.2MCMC方法简介
13.2.1Gibbs抽样
13.2.2Metropolis�睭astings算法
13.2.3Hamiltonian Monte Carlo算法
13.2.4收敛性的诊断
13.3模型评价
13.4贝叶斯模型的应用
索引
参考文献
封面
书名:风险模型:基于R的保险损失预测
作者:孟生旺
页数:426
定价:¥89.0
出版社:清华大学出版社
出版日期:2017-09-01
ISBN:9787302482062
PDF电子书大小:145MB 高清扫描完整版