小波与滤波器组设计-理论及其应用
本书特色
[
本书的主要内容包括小波和滤波器理论及其应用,其目的在于使读者掌握对于数据处理非常重要的工
具——小波与滤波器——的理论及其应用方法. 通过本书的学习,读者能够掌握小波分析理论的基本框架
和滤波器组设计的基本理论和方法,了解小波分析在图像处理和信号处理中应用的基本技巧,了解小波和滤
波器设计学科的前沿发展,为进一步从事数字信号处理和数字图像处理相关的研究和应用打下良好的基础.
]
目录
第 1章引言 …. 1
1.1信号与采样 1
1.2傅里叶变换与 Z变换 …. 5
1.3小波与滤波器 .. 7
1.4习题 …13
第 2章滤波器组…15
2.1抽取与插值 …..15
2.2二通道滤波器组 ….20
2.2.1完全重构条件 …21
2.2.2半带滤波器和滤波器构造 …..23
2.3多相位矩阵 …..24
2.4习题 …31
第 3章正交滤波器组 ..33
3.1仿酉矩阵 ..33
3.2滤波器组构造的栅格方法 …35
3.3正交滤波器的构造方法 39
3.4习题 …45
第 4章正交小波与多尺度分析.46
4.1正交多尺度分析 ….46
4.2正交小波 ..49
4.3 Daubechies小波 …60
4.4 Cascade算法 ..67
4.5习题 …71
小波与滤波器组设计:理论及其应用
第 5章双正交小波与滤波器 ….72
5.1双正交小波及其多尺度分析 …..72
5.2双正交滤波器组 ….78
5.3具有对称性和紧支撑的双正交小波 .81
5.4习题 …85
第 6章小波滤波器的提升算法.86
6.1提升算法 ..86
6.2双正交滤波器的提升格式分解 ..90
第 7章图像的小波分解及其统计特性…95
7.1图像的离散小波分解 …95
7.2图像处理中的线性逆问题 …98
7.3马尔可夫随机场初步 . 100
7.3.1马尔可夫随机场基本理论 … 100
7.3.2马尔可夫随机场与吉布斯分布 .. 102
7.3.3基于*大后验概率 -马尔可夫随机场模型的复原算法介绍 103
7.4图像小波变换的基本特性 . 106
7.5图像在小波域的统计模型 . 109
7.6常用参数估计方法介绍 …. 117
第 8章小波域图像去噪算法 .. 121
8.1图像去噪模型介绍 ….. 121
8.2小波域图像去噪的*大后验概率模型 ..
124
8.3小波域图像去噪的收缩模型 … 129
8.3.1小波去噪阈值选择 . 132
8.3.2小波阈值去噪背后的原理 … 138
8.3.3空间自适应收缩去噪算法 … 141
8.3.4伪吉布斯效应和平稳小波阈值去噪 . 144
8.4基于样条变换的小波去噪算法 146
8.5三维变换域联合滤波去噪算法 151
第 9章小波域图像复原算法 .. 157
9.1图像复原模型介绍 ….. 157
9.2小波域稀疏约束图像复原 . 160
目录9.3基于小波域隐马尔可夫树模型的图像复原 .
164
9.3.1问题的化简和求解 . 165
9.3.2隐马尔可夫树模型参数向量的估计 . 167
9.3.3算法描述及实验结果比较 … 168
9.4基于小波域相对误差约束的图像复原算法 .
170
9.4.1图像去模糊中的振铃现象 … 170
9.4.2频率域相对误差 …. 174
9.4.3基于频率域相对误差的图像去模糊算法 .
178
第 10章小波图像压缩技术 … 183
10.1图像编码基础 …. 183
10.2小波系数的树表示和编码 ….. 189
10.3嵌入式零树小波编码技术 ….. 191
10.3.1零树小波定义 …. 192
10.3.2零树小波编码 …. 192
10.3.3零树逐次逼近量化 … 194
10.3.4嵌入式零树小波编码算法示例 …..
196
10.4多级树集合分裂算法 200
10.5 JPEG2000和 EBCOT算法简介 206
10.6多分量预测编码技术介绍 ….. 213
10.6.1图像的多分量预测模型 … 215
10.6.2多分量预测编码算法介绍及结果比较 .
218
第 11章几何小波初步 …. 221
11.1图像模型和*优逼近 222
11.1.1图像模型 ….. 222
11.1.2*优逼近 ….. 223
11.2 Curvelet变换 …. 225
11.2.1连续 Curvelet变换 .. 225
11.2.2离散 Curvelet变换 .. 227
11.2.3 Curvelet变换的奇异性检测 ..
228
11.3 Bandlet . 230
11.3.1几何流 .. 230
11.3.2几何流的确定 …. 232
11.3.3 Bandlet的*佳 m-项逼近 ….. 232
小波与滤波器组设计:理论及其应用11.3.4 Bandlet的应用 .. 233
11.4 Contourlet … 235
11.4.1拉普拉斯金字塔 . 236
11.4.2方向滤波器组 …. 237
11.5几何小波总结 …. 238
第 12章稀疏表示与压缩感知介绍 ….. 239
12.1基本概念介绍 …. 239
12.2匹配追踪介绍 …. 241
12.3基追踪介绍 . 248
12.3.1基追踪算法介绍 . 249
12.3.2基于稀疏表示的图像分解 ….. 252
12.4压缩感知介绍 …. 256
12.4.1压缩感知基本原理 … 256
12.4.2压缩感知算法介绍 … 258
12.4.3压缩感知应用示例 … 262
第 13章自适应信号分解算法介绍 ….. 265
13.1信号的自适应分解概念 .. 265
13.2经验模式分解算法 … 268
13.2.1经验模式分解算法基础 … 268
13.2.2经验模式分解中包络的分析与改进 ….
271
13.2.3经验模式分解中的模式混叠现象 . 278
13.3零空间追踪算法介绍 283
13.3.1基于微分算子的零空间追踪算法 . 286
13.3.2基于微分算子的零空间追踪算法 . 290
附录 A数学基础知识 298
A.1线性空间 ….. 298
A.2线性赋范空间 ….. 299
A.3希尔伯特空间 ….. 301
参考文献 … 305
封面
书名:小波与滤波器组设计-理论及其应用
作者:彭思龙
页数:314
定价:¥58.0
出版社:清华大学出版社
出版日期:2017-08-01
ISBN:9787302475972
PDF电子书大小:107MB 高清扫描完整版
资源仅供学习参考,禁止用于商业用途,请在下载后24小时内删除!