鲁棒控制中的正交化方法及其应用

本书特色

[

  本书重点突出,基于经典控制理论的正交函数系构造方法;在分析该正交函数系特点的基础上,研究hankel算子的紧矩阵表达及其奇异值分析问题,进而给出nehari问题的正交函数基下的简单求解方法;*后,运用上述结果进行离散系统鲁棒综合问题的阐述。在把握重点的基础上,本书在内容上相互衔接、注重逻辑性;在结构上,试图建立较完备的理论体系。

]

内容简介

[

    
《鲁棒控制中的正交化方法及其应用》(作者赵晓东)主要讨论正交有理函数及其在鲁棒控制中的应用。从广为人知的经典控制理论中的jury稳定判据出发,构造特定严格真有理函数空间的正交基,利用该组正交基研究
hankel算子的矩阵表达形式及其奇异值分解问题,从而进一步研究*优与次*优的nehari问题,给出该问题矩阵代数解的形式并统一该问题解的表达形式。在此基础上,得到*优与次*优的hankel逼近问题的统一形式的解,并研究鲁棒控制器设计问题。本书还通过把参数化的鲁棒控制器问题转化为
nehari问题而得到基于正该交基的鲁棒控制器解集形式。*后,探讨用多项式方程来求解nehari问题的方法。本书遵循由浅入深的写作思路,力争做到在内容上相互衔接,在理论上互相补充,以形成较完备的鲁棒控制理论正交化方法研究体系。

    
《鲁棒控制中的正交化方法及其应用》可作为控制理论与控制工程专业以及控制、机械、通信、计算机、数学等相关专业的研究生教材,也可作为从事鲁棒控制研究的科研、教学和工程技术人员的参考书。

    

]

目录

前言
符号与标记
第1章  绪论
  1.1  背景与动机
  1.2  本书主要内容
  参考文献
第2章  基础知识
  2.1  线性代数基础
  2.1.1  向量、内积和范数
  2.1.2  正交矩阵与酉矩阵
  2.1.3  向量空间的基
  2.1.4  正交化过程
  2.2  矩阵分解
  2.2.1  qr分解
  2.2.2  lu分解
  2.2.3  svd分解
  2.3  信号与系统
  2.3.1  基本概念
  2.3.2  z变换和传递函数
  2.4  h2和h□空间
  2.4.1  函数空间
  2.4.2  范数计算
  参考文献
第3章  系统变换与分解
  3.1  线性分式变换
  3.1.1  下分式变换
  3.1.2  上分式变换
  3.1.3  hm变换
  3.2  系统分解理论
  3.2.1  互质分解
  3.2.2  ie则分解
  3.2.3  内外分解
  3.2.4  j-谱分解
  参考文献
第4章  基于jury表构造的正交有理函数
  4.  1函数空间的正交基
  4.1.1  函数空间的基
  4.1.2  gram—schmidt正交化
  4.2  内函数的状态空间平衡实现
  4.3  基于jury表的单位正交有理函数
  4.4  

封面

鲁棒控制中的正交化方法及其应用

书名:鲁棒控制中的正交化方法及其应用

作者:赵晓东 著

页数:168

定价:¥45.0

出版社:科学出版社

出版日期:2011-10-01

ISBN:9787030324191

PDF电子书大小:156MB 高清扫描完整版

百度云下载:http://www.chendianrong.com/pdf

发表评论

登录后才能评论