第4卷 光学传感器 上册-化学传感器:仿真与建模-影印版

本书特色

[

momentum press is proud to bring to you chemical sensors: simulation and modeling volume 4: opti cal sensors,edited by ghenadii koroteenkov. this is the fourth of a new multi-volume comprehensive reference work that provides computer simulation and modeling techniques in various fields
   of chemical sensing and the important applications for chemical sensing such as bulk and surfacc diffusion, adsorption, surface reactions, sintering, conductivity, mass transport, and interphasc interactions.

]

作者简介

[

Ghenadii Korotcenkov, received his Ph.D. in Physics and Technology of Semiconductor Materials and Devices in 1976, and his Habilitate Degree (Dr.Sci.) in Physics and Mathematics of Semiconductors and Dielectrics in 1990. For a long time he was a leader of the scientific Gas Sensor Group and manager of various national and international scientific and engineering projects carried out in the Laboratory of Micro- and Optoelectronics, Technical University of Moldova. Currently, Dr. Korotcenkov is a research professor at the Gwangju Institute of Science and Technology, Republic of Korea.
  Specialists from the former Soviet Union know Dr. Korotcenkov’s research results in the field of study of Schottky barriers, MOS structures, native oxides, and photoreceivers based on Group IIIH-V compounds very well. His current research interests include materials science and surface science, focused on nanostructured metal oxides and solid-state gas sensor design. Dr. Korotcenkov is the author or editor of 11 books and special issues, 11 invited review papers, 17 book chapters, and more than 190 peer-reviewed articles. He holds 18 patents, and he has presented more than 200 reports at national and international conferences.
  Dr. Korotcenkov’s research activities have been honored by an Award of the Supreme Council of Science and Advanced Technology of the Republic of Moldova (2004), The Prize of the Presidents of the Ukrainian, Belarus, and Moldovan Academies of Sciences (2003), Senior Research Excellence Awards from the Technical University of Moldova (2001, 2003, 2005), a fellowship from the International Research Exchange Board (1998), and the National Youth Prize of the Republic of Moldova (1980), among others.

]

目录

prefaceabout the editorcontributors1 atomistic simulation of hierarchical nanostructured materials for optical chemical sensing1 introduction2 hierarchical nanomaterials: construction and organization principles; materials construction by the bottom-up principle2.1 hierarchical nanomaterials for nanophotonics and their sensing potentialities2.2 space-time scale hierarchy and the structure of nanomaterials for nanophotonics2.3 structure of nanomaterials for optical chemical sensors: from a molecule to a supramolecular center, nanoparticle,and nanomaterial3 hierarchy ofatomistic simulation methods corresponding to scale hierarchy4 atomistic multiscale simulation of hierarchical nanomaterials for optical chemical sensors: step by step4.1 supramolecular level: calculations of molecular interactions between gas-phase analyte molecules and simple substrate models4.2 supramolecular level: dft calculations of the 9-diphenylaminoacridine (9-dpaa) fluorescent indicator and its interactions with analyte molecules4.3 multiscale level: md/dft slab modeling of the adsorption of simple organic and inorganic molecules on an amorphous silica surface4.4 multiscale level: md/dft cluster modeling of a 9-dpaa/ silica rc and its interaction with small analyte molecules4.5 multiscale level: md/dft cluster modeling of the effect of analyte molecules on the absorption and fluorescence spectra of a 9-dpaa/silica rc4.6 multiscale level: modeling the structure and spectra of an rc based on the nile red dye adsorbed on the surface of polystyrene5 prospects and outlookacknowledgmentsreferences2 self-assembling and modeling of sensing layers: photonic crystals1 introduction2 photonic crystals3 methods of modeling spontaneous emission modification3.1 correspondence principle3.2 dipole near a surface3.3 modeling the modification of spontaneous emission based on the finite-difference time-domain method4 conclusionreferences3 optical sensing by metal oxide nanostructures: phenomenology and basic properties1 introduction2 optochemical sensing by oxide materials: methods not based on photoluminescence2.1 approaches to optical sensing2.2 oxide-based optochemical sensing using absorbanceresponses4 simulation and modeling of hydrogen leak sensors based on optical fiber gratings5 simulation and modeling of surface plasmon resonance-based fiber optical sensorsindex

封面

第4卷 光学传感器 上册-化学传感器:仿真与建模-影印版

书名:第4卷 光学传感器 上册-化学传感器:仿真与建模-影印版

作者:科瑞特森科韦

页数:502

定价:¥80.0

出版社:哈尔滨工业大学出版社

出版日期:2015-01-01

ISBN:9787560349060

PDF电子书大小:120MB 高清扫描完整版

百度云下载:http://www.chendianrong.com/pdf

发表评论

邮箱地址不会被公开。 必填项已用*标注